18 research outputs found

    Vegetation Response to Temperature Change on the Rwenzori Slopes, Western Uganda: Preliminary Results from Pollen Analysis

    Get PDF
    Several climatic periods, cooler than today, were evidenced on the Rwenzori Mountains, by the accumulation of moraines deposited by glaciers that advanced to lower altitudes on the mountain slopes. This paper provides evidence from pollen analysis that between ca. 9300 and ca. 6400 yr. B.P., Hagenia abyssinica and Ericaceae, trees typical of the junction bamboo-zone-ericaceous belt (altitude 3000 m), were distributed in significant abundance in the vegetation surrounding bog 2 (altitude 2500 m). This lowering of vegetation belts suggests climatic conditions cooler than today by about 3 ⁰C. The co-existence of ericaceous vegetation and montane forest evidenced from ca. 9300 to ca. 6400 yr. B.P. is in agreement with the Omurubaho glaciation reported to have occurred on the Rwenzori from ca. 10 000 to ca. 5000 yr. B.P. Keywords: Rwenzori, Moraines, Lapse rate, Omurubaho glaciatio

    Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation: 1. major and minor element variation [Discussion paper]

    Get PDF
    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project intends to provide a detailed data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe, to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lakustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects in particular FeO, MnO, SO3 and F concentrations, which are 2 to 10 times higher in fossil than in modern enamel; secondary enrichments in fossil dentin and cement are even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ~1 %). Linear regression analysis reveals very tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40 % to 300 %) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite variation. Fossil enamel from hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granite and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed the observed element distribution can only be explained by recrystallization of existing and addition of new apatite during maturation. Perhaps the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water composition, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation

    Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation : part 2, alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Get PDF
    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1) as well as for Sr (9–2150 μg g−1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that Ba mobility decreased with increasing aridification due to preferential deposition with clay and Fe-oxide-hydroxide or barite on the watershed of Lake Albert

    Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance [Discussion paper]

    Get PDF
    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120–9336 μg g−1) as well as for Sr (9–2150 μg g−1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3–1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba/Sr ranging from 0.1 to 3. This ratio varies on spatial and temporal scales and traces provenance signals as well as the fractionation of the elements in the hydrological cycle. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic or Archean crustal rocks as the ultimate sources of Sr and Ba. The provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from about 2 to 0.5. This trend can be correlated with changes in climate from humid to arid in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that with time, Ba mobility decreased relative to that of Sr. This can arise if preferential adsorption of Ba to clay and Fe-oxide-hydroxide is related to increasing aridification. Additionally, weathering solutions and lake water can become increasingly alkaline and barite becomes stable. In this case, Ba will be preferentially deposited on the watershed of Lake Albert and rivers with low Ba/Sr will feed the habitats of the Hippopotamids

    Linking land and lake: Using novel geochemical techniques to understand biological response to environmental change

    Get PDF
    The exploitation of lakes has led to large-scale contemporary impacts on freshwater systems, largely in response to catchment clearance. Such clearance is causing changes to carbon dynamics in tropical lakes which may have significance for wider carbon budgets, depending on the changes in carbon sequestration and mineralisation driven by changing roles of terrestrial and aquatic carbon in lakes over time. Despite increasing awareness of the pivotal role of carbon source in carbon dynamics, discriminating the source of carbon from a palaeolimnological record is rarely undertaken. Here we use novel geochemical techniques (brGDGTs, n-alkanes, Rock-Eval pyrolysis), paired with traditional analyses (diatoms, pollen), to elucidate changing sources of carbon through time and ecosystem response. Environmental changes at Lake Nyamogusingiri can be divided into three phases: Phase I (CE 1150-1275), a shallow and productive lake, where a diverse terrestrial environment is, initially, the main carbon source, before switching to an aquatic source; Phase II (CE 1275-1900), variable lake levels (generally in decline) with increasing productivity, and carbon is autochthonous in source; Phase III (CE 1900-2007), lake level declines, and the carbon is of a mixed source, though the terrestrially derived carbon is from a less diverse source. The organic geochemical analyses provide a wealth of data regarding the complexity of aquatic response to catchment and with-in lake changes. These data demonstrate show that small, tropical lake systems have the potential to bury high quantities of carbon, which has implications for the disruption of local biogeochemical cycles (C, P, N, and Si) both in the past, and the future as human and climate pressures increase

    Environmental change over the last millennium recorded in two contrasting crater lakes in western Uganda, eastern Africa (Lakes Kasenda and Wandakara)

    Get PDF
    The last millennium is a key period for understanding environmental change in eastern Africa, as there is clear evidence of marked fluctuations in climate (effective moisture) that place modern concern with future climate change in a proper context, both in terms of environmental and societal impacts and responses. Here, we compare sediment records from two small, nearby, closed crater lakes in western Uganda (Lake Kasenda and Lake Wandakara), spanning the last 700 (Wandakara) and 1200 years (Kasenda) respectively. Multiproxy analyses of chemical sedimentary parameters (including C/N ratios, δ13C of bulk organic matter and δ13C and δ18O of authigenic carbonates) and biotic remains (diatoms, aquatic macrofossils, chironomids) suggest that Kasenda has been sensitive to climate over much of this period, and has shown substantial fluctuations in conductivity, while Wandakara has a more muted response, likely due to the increasing dominance of human activity as a driver of change within the lake and catchment over the length of our record. Evidence from both records, however, supports the idea that lake levels were low from ∼AD 700–1000 AD, with increasing aridity from AD 1100–1600, and brief wet phases around AD 1000 and 1400. Wetter conditions are recorded in the 1700s, but drought returned by the end of the century and into the early 1800s, becoming wetter again from the mid-1800s. Comparison with other records across eastern Africa suggests that while some events are widespread (e.g. aridity beginning ∼ AD 1100), at other times there is a more complex spatial signature (e.g. in the 1200s to 1300s, and from the 1400s to 1600s). This study highlights the important role of catchment-specific factors (e.g. lakemorphometry, catchment size, and human impact) in modulating the sensitivity of proxies, and lake records, as indicators of environmental change, and potential hazards when regional inference is based on a single site or proxy

    Linking land and lake: using novel geochemical techniques to understand biological response to environmental change

    Get PDF
    The exploitation of lakes has led to large-scale contemporary impacts on freshwater systems, largely in response to catchment clearance. Such clearance is causing changes to carbon dynamics in tropical lakes which may have significance for wider carbon budgets, depending on the changes in carbon sequestration and mineralisation driven by changing roles of terrestrial and aquatic carbon in lakes over time. Despite increasing awareness of the pivotal role of carbon source in carbon dynamics, discriminating the source of carbon from a palaeolimnological record is rarely undertaken. Here we use novel geochemical techniques (brGDGTs, n-alkanes, Rock-Eval pyrolysis), paired with traditional analyses (diatoms, pollen), to elucidate changing sources of carbon through time and ecosystem response. Environmental changes at Lake Nyamogusingiri can be divided into three phases: Phase I (CE 1150–1275), a shallow and productive lake, where a diverse terrestrial environment is, initially, the main carbon source, before switching to an aquatic source; Phase II (CE 1275–1900), variable lake levels (generally in decline) with increasing productivity, and carbon is autochthonous in source; Phase III (CE 1900–2007), lake level declines, and the carbon is of a mixed source, though the terrestrially derived carbon is from a less diverse source. The organic geochemical analyses provide a wealth of data regarding the complexity of aquatic response to catchment and with-in lake changes. These data demonstrate that small, tropical lake systems have the potential to bury high quantities of carbon, which has implications for the disruption of local biogeochemical cycles (C, P, N, and Si) both in the past, and the future as human and climate pressures increase
    corecore